37
0

Saliency strikes back: How filtering out high frequencies improves white-box explanations

Abstract

Attribution methods correspond to a class of explainability methods (XAI) that aim to assess how individual inputs contribute to a model's decision-making process. We have identified a significant limitation in one type of attribution methods, known as ``white-box" methods. Although highly efficient, as we will show, these methods rely on a gradient signal that is often contaminated by high-frequency artifacts. To overcome this limitation, we introduce a new approach called "FORGrad". This simple method effectively filters out these high-frequency artifacts using optimal cut-off frequencies tailored to the unique characteristics of each model architecture. Our findings show that FORGrad consistently enhances the performance of already existing white-box methods, enabling them to compete effectively with more accurate yet computationally demanding "black-box" methods. We anticipate that our research will foster broader adoption of simpler and more efficient white-box methods for explainability, offering a better balance between faithfulness and computational efficiency.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.