ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.05728
19
1

Towards A Scalable Solution for Improving Multi-Group Fairness in Compositional Classification

11 July 2023
James Atwood
Tina Tian
Ben Packer
Meghana Deodhar
Jilin Chen
Alex Beutel
Flavien Prost
Ahmad Beirami
    FaML
ArXivPDFHTML
Abstract

Despite the rich literature on machine learning fairness, relatively little attention has been paid to remediating complex systems, where the final prediction is the combination of multiple classifiers and where multiple groups are present. In this paper, we first show that natural baseline approaches for improving equal opportunity fairness scale linearly with the product of the number of remediated groups and the number of remediated prediction labels, rendering them impractical. We then introduce two simple techniques, called {\em task-overconditioning} and {\em group-interleaving}, to achieve a constant scaling in this multi-group multi-label setup. Our experimental results in academic and real-world environments demonstrate the effectiveness of our proposal at mitigation within this environment.

View on arXiv
Comments on this paper