ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.02738
23
2

RecallM: An Adaptable Memory Mechanism with Temporal Understanding for Large Language Models

6 July 2023
Brandon Kynoch
Hugo Latapie
Dwane van der Sluis
    CLL
    LLMAG
    KELM
ArXivPDFHTML
Abstract

Large Language Models (LLMs) have made extraordinary progress in the field of Artificial Intelligence and have demonstrated remarkable capabilities across a large variety of tasks and domains. However, as we venture closer to creating Artificial General Intelligence (AGI) systems, we recognize the need to supplement LLMs with long-term memory to overcome the context window limitation and more importantly, to create a foundation for sustained reasoning, cumulative learning and long-term user interaction. In this paper we propose RecallM, a novel architecture for providing LLMs with an adaptable and updatable long-term memory mechanism. Unlike previous methods, the RecallM architecture is particularly effective at belief updating and maintaining a temporal understanding of the knowledge provided to it. We demonstrate through various experiments the effectiveness of this architecture. Furthermore, through our own temporal understanding and belief updating experiments, we show that RecallM is four times more effective than using a vector database for updating knowledge previously stored in long-term memory. We also demonstrate that RecallM shows competitive performance on general question-answering and in-context learning tasks.

View on arXiv
Comments on this paper