15
3

Sampling lattice points in a polytope: a Bayesian biased algorithm with random updates

Abstract

The set of nonnegative integer lattice points in a polytope, also known as the fiber of a linear map, makes an appearance in several applications including optimization and statistics. We address the problem of sampling from this set using three ingredients: an easy-to-compute lattice basis of the constraint matrix, a biased sampling algorithm with a Bayesian framework, and a step-wise selection method. The bias embedded in our algorithm updates sampler parameters to improve fiber discovery rate at each step chosen from previously discovered elements. We showcase the performance of the algorithm on several examples, including fibers that are out of reach for the state-of-the-art Markov bases samplers.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.