25
8

A Double Machine Learning Approach to Combining Experimental and Observational Data

Abstract

Experimental and observational studies often lack validity due to untestable assumptions. We propose a double machine learning approach to combine experimental and observational studies, allowing practitioners to test for assumption violations and estimate treatment effects consistently. Our framework tests for violations of external validity and ignorability under milder assumptions. When only one of these assumptions is violated, we provide semiparametrically efficient treatment effect estimators. However, our no-free-lunch theorem highlights the necessity of accurately identifying the violated assumption for consistent treatment effect estimation. Through comparative analyses, we show our framework's superiority over existing data fusion methods. The practical utility of our approach is further exemplified by three real-world case studies, underscoring its potential for widespread application in empirical research.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.