ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.15695
6
0

Joint Learning of Network Topology and Opinion Dynamics Based on Bandit Algorithms

25 June 2023
Yu Xing
Xudong Sun
Karl H. Johansson
ArXivPDFHTML
Abstract

We study joint learning of network topology and a mixed opinion dynamics, in which agents may have different update rules. Such a model captures the diversity of real individual interactions. We propose a learning algorithm based on multi-armed bandit algorithms to address the problem. The goal of the algorithm is to find each agent's update rule from several candidate rules and to learn the underlying network. At each iteration, the algorithm assumes that each agent has one of the updated rules and then modifies network estimates to reduce validation error. Numerical experiments show that the proposed algorithm improves initial estimates of the network and update rules, decreases prediction error, and performs better than other methods such as sparse linear regression and Gaussian process regression.

View on arXiv
Comments on this paper