ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.14525
27
25

ParameterNet: Parameters Are All You Need

26 June 2023
Kai Han
Yunhe Wang
Jianyuan Guo
Enhua Wu
    VLM
    AI4CE
ArXivPDFHTML
Abstract

The large-scale visual pretraining has significantly improve the performance of large vision models. However, we observe the \emph{low FLOPs pitfall} that the existing low-FLOPs models cannot benefit from large-scale pretraining. In this paper, we introduce a novel design principle, termed ParameterNet, aimed at augmenting the number of parameters in large-scale visual pretraining models while minimizing the increase in FLOPs. We leverage dynamic convolutions to incorporate additional parameters into the networks with only a marginal rise in FLOPs. The ParameterNet approach allows low-FLOPs networks to take advantage of large-scale visual pretraining. Furthermore, we extend the ParameterNet concept to the language domain to enhance inference results while preserving inference speed. Experiments on the large-scale ImageNet-22K have shown the superiority of our ParameterNet scheme. For example, ParameterNet-600M can achieve higher accuracy on ImageNet than the widely-used Swin Transformer (81.6\% \emph{vs.} 80.9\%) and has much lower FLOPs (0.6G \emph{vs.} 4.5G). In the language domain, LLaMA-1B enhanced with ParameterNet achieves 2\% higher accuracy over vanilla LLaMA. The code will be released at \url{https://parameternet.github.io/}.

View on arXiv
Comments on this paper