ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.14442
21
3

Topology Estimation of Simulated 4D Image Data by Combining Downscaling and Convolutional Neural Networks

26 June 2023
Khalil Mathieu Hannouch
Stephan Chalup
ArXivPDFHTML
Abstract

Four-dimensional image-type data can quickly become prohibitively large, and it may not be feasible to directly apply methods, such as persistent homology or convolutional neural networks, to determine the topological characteristics of these data because they can encounter complexity issues. This study aims to determine the Betti numbers of large four-dimensional image-type data. The experiments use synthetic data, and demonstrate that it is possible to circumvent these issues by applying downscaling methods to the data prior to training a convolutional neural network, even when persistent homology software indicates that downscaling can significantly alter the homology of the training data. When provided with downscaled test data, the neural network can estimate the Betti numbers of the original samples with reasonable accuracy.

View on arXiv
Comments on this paper