ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.14054
14
0

Towards Understanding Gradient Approximation in Equality Constrained Deep Declarative Networks

24 June 2023
Stephen Gould
Mingle Xu
Zhiwei Xu
Yanbin Liu
ArXivPDFHTML
Abstract

We explore conditions for when the gradient of a deep declarative node can be approximated by ignoring constraint terms and still result in a descent direction for the global loss function. This has important practical application when training deep learning models since the approximation is often computationally much more efficient than the true gradient calculation. We provide theoretical analysis for problems with linear equality constraints and normalization constraints, and show examples where the approximation works well in practice as well as some cautionary tales for when it fails.

View on arXiv
Comments on this paper