ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.13914
27
0

G-TRACER: Expected Sharpness Optimization

24 June 2023
John R. Williams
Stephen J. Roberts
ArXivPDFHTML
Abstract

We propose a new regularization scheme for the optimization of deep learning architectures, G-TRACER ("Geometric TRACE Ratio"), which promotes generalization by seeking flat minima, and has a sound theoretical basis as an approximation to a natural-gradient descent based optimization of a generalized Bayes objective. By augmenting the loss function with a TRACER, curvature-regularized optimizers (eg SGD-TRACER and Adam-TRACER) are simple to implement as modifications to existing optimizers and don't require extensive tuning. We show that the method converges to a neighborhood (depending on the regularization strength) of a local minimum of the unregularized objective, and demonstrate competitive performance on a number of benchmark computer vision and NLP datasets, with a particular focus on challenging low signal-to-noise ratio problems.

View on arXiv
Comments on this paper