ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.13817
11
0

The Double Helix inside the NLP Transformer

23 June 2023
Jason H.J. Lu
Qingzhe Guo
ArXivPDFHTML
Abstract

We introduce a framework for analyzing various types of information in an NLP Transformer. In this approach, we distinguish four layers of information: positional, syntactic, semantic, and contextual. We also argue that the common practice of adding positional information to semantic embedding is sub-optimal and propose instead a Linear-and-Add approach. Our analysis reveals an autogenetic separation of positional information through the deep layers. We show that the distilled positional components of the embedding vectors follow the path of a helix, both on the encoder side and on the decoder side. We additionally show that on the encoder side, the conceptual dimensions generate Part-of-Speech (PoS) clusters. On the decoder side, we show that a di-gram approach helps to reveal the PoS clusters of the next token. Our approach paves a way to elucidate the processing of information through the deep layers of an NLP Transformer.

View on arXiv
Comments on this paper