ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.13723
36
14

Human-AI Coevolution

23 June 2023
D. Pedreschi
Luca Pappalardo
Emanuele Ferragina
R. Baeza-Yates
Albert-László Barabási
F. Dignum
Virginia Dignum
Tina Eliassi-Rad
F. Giannotti
János Kertész
A. Knott
Yannis E. Ioannidis
Paul Lukowicz
A. Passarella
Alex Pentland
John Shawe-Taylor
Alessandro Vespignani
ArXivPDFHTML
Abstract

Human-AI coevolution, defined as a process in which humans and AI algorithms continuously influence each other, increasingly characterises our society, but is understudied in artificial intelligence and complexity science literature. Recommender systems and assistants play a prominent role in human-AI coevolution, as they permeate many facets of daily life and influence human choices on online platforms. The interaction between users and AI results in a potentially endless feedback loop, wherein users' choices generate data to train AI models, which, in turn, shape subsequent user preferences. This human-AI feedback loop has peculiar characteristics compared to traditional human-machine interaction and gives rise to complex and often ``unintended'' social outcomes. This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science focused on the theoretical, empirical, and mathematical investigation of the human-AI feedback loop. In doing so, we: (i) outline the pros and cons of existing methodologies and highlight shortcomings and potential ways for capturing feedback loop mechanisms; (ii) propose a reflection at the intersection between complexity science, AI and society; (iii) provide real-world examples for different human-AI ecosystems; and (iv) illustrate challenges to the creation of such a field of study, conceptualising them at increasing levels of abstraction, i.e., technical, epistemological, legal and socio-political.

View on arXiv
Comments on this paper