Investigators, funders, and the public desire knowledge on topics and trends
in publicly funded research but current efforts in manual categorization are
limited in scale and understanding. We developed a semi-automated approach to
extract and name research topics, and applied this to \1.9BofNCIfundingover21yearsintheradiologicalsciencestodeterminemicro−andmacro−scaleresearchtopicsandfundingtrends.Ourmethodreliesonsequentialclusteringofexistingbiomedical−basedwordembeddings,namingusingsubjectmatterexperts,andvisualizationtodiscovertrendsatamacroscopicscaleaboveindividualtopics.Wepresentresultsusing15and60clustertopics,wherewefoundthat2Dprojectionofgrantembeddingsrevealstwodominantaxes:physics−biologyandtherapeutic−diagnostic.Forourdataset,wefoundthatfundingfortherapeutics−andphysics−basedresearchhaveoutpaceddiagnostics−andbiology−basedresearch,respectively.Wehopetheseresultsmay(1)giveinsighttofundersontheappropriatenessoftheirfundingallocation,(2)assistinvestigatorsincontextualizingtheirworkandexploreneighboringresearchdomains,and(3)allowthepublictoreviewwheretheirtaxdollarsarebeingallocated.