ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.11759
9
0

Deep Learning Accelerator in Loop Reliability Evaluation for Autonomous Driving

20 June 2023
Haitong Huang
Cheng Liu
    UQCV
ArXivPDFHTML
Abstract

The reliability of deep learning accelerators (DLAs) used in autonomous driving systems has significant impact on the system safety. However, the DLA reliability is usually evaluated with low-level metrics like mean square errors of the output which remains rather different from the high-level metrics like total distance traveled before failure in autonomous driving. As a result, the high-level reliability metrics evaluated at the post-silicon stage may still lead to DLA design revision and result in expensive reliable DLA design iterations targeting at autonomous driving. To address the problem, we proposed a DLA-in-loop reliability evaluation platform to enable system reliability evaluation at the early DLA design stage.

View on arXiv
Comments on this paper