ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.10718
15
1

Algorithms of Sampling-Frequency-Independent Layers for Non-integer Strides

19 June 2023
Kanami Imamura
Tomohiko Nakamura
Norihiro Takamune
Kohei Yatabe
Hiroshi Saruwatari
ArXivPDFHTML
Abstract

In this paper, we propose algorithms for handling non-integer strides in sampling-frequency-independent (SFI) convolutional and transposed convolutional layers. The SFI layers have been developed for handling various sampling frequencies (SFs) by a single neural network. They are replaceable with their non-SFI counterparts and can be introduced into various network architectures. However, they could not handle some specific configurations when combined with non-SFI layers. For example, an SFI extension of Conv-TasNet, a standard audio source separation model, cannot handle some pairs of trained and target SFs because the strides of the SFI layers become non-integers. This problem cannot be solved by simple rounding or signal resampling, resulting in the significant performance degradation. To overcome this problem, we propose algorithms for handling non-integer strides by using windowed sinc interpolation. The proposed algorithms realize the continuous-time representations of features using the interpolation and enable us to sample instants with the desired stride. Experimental results on music source separation showed that the proposed algorithms outperformed the rounding- and signal-resampling-based methods at SFs lower than the trained SF.

View on arXiv
Comments on this paper