ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.10461
25
3

GAN-based Image Compression with Improved RDO Process

18 June 2023
Fanxin Xia
Jian Jin
Lili Meng
Feng Ding
Huaxiang Zhang
ArXivPDFHTML
Abstract

GAN-based image compression schemes have shown remarkable progress lately due to their high perceptual quality at low bit rates. However, there are two main issues, including 1) the reconstructed image perceptual degeneration in color, texture, and structure as well as 2) the inaccurate entropy model. In this paper, we present a novel GAN-based image compression approach with improved rate-distortion optimization (RDO) process. To achieve this, we utilize the DISTS and MS-SSIM metrics to measure perceptual degeneration in color, texture, and structure. Besides, we absorb the discretized gaussian-laplacian-logistic mixture model (GLLMM) for entropy modeling to improve the accuracy in estimating the probability distributions of the latent representation. During the evaluation process, instead of evaluating the perceptual quality of the reconstructed image via IQA metrics, we directly conduct the Mean Opinion Score (MOS) experiment among different codecs, which fully reflects the actual perceptual results of humans. Experimental results demonstrate that the proposed method outperforms the existing GAN-based methods and the state-of-the-art hybrid codec (i.e., VVC).

View on arXiv
Comments on this paper