ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.08292
16
5

A reinforcement learning strategy for p-adaptation in high order solvers

14 June 2023
D. Huergo
G. Rubio
E. Ferrer
    AI4CE
ArXivPDFHTML
Abstract

Reinforcement learning (RL) has emerged as a promising approach to automating decision processes. This paper explores the application of RL techniques to optimise the polynomial order in the computational mesh when using high-order solvers. Mesh adaptation plays a crucial role in improving the efficiency of numerical simulations by improving accuracy while reducing the cost. Here, actor-critic RL models based on Proximal Policy Optimization offer a data-driven approach for agents to learn optimal mesh modifications based on evolving conditions. The paper provides a strategy for p-adaptation in high-order solvers and includes insights into the main aspects of RL-based mesh adaptation, including the formulation of appropriate reward structures and the interaction between the RL agent and the simulation environment. We discuss the impact of RL-based mesh p-adaptation on computational efficiency and accuracy. We test the RL p-adaptation strategy on a 1D inviscid Burgers' equation to demonstrate the effectiveness of the strategy. The RL strategy reduces the computational cost and improves accuracy over uniform adaptation, while minimising human intervention.

View on arXiv
Comments on this paper