31
6

Reinforcement Learning-Driven Linker Design via Fast Attention-based Point Cloud Alignment

Abstract

Proteolysis-Targeting Chimeras (PROTACs) represent a novel class of small molecules which are designed to act as a bridge between an E3 ligase and a disease-relevant protein, thereby promoting its subsequent degradation. PROTACs are composed of two protein binding "active" domains, linked by a "linker" domain. The design of the linker domain is challenging due to geometric and chemical constraints given by its interactions, and the need to maximize drug-likeness. To tackle these challenges, we introduce ShapeLinker, a method for de novo design of linkers. It performs fragment-linking using reinforcement learning on an autoregressive SMILES generator. The method optimizes for a composite score combining relevant physicochemical properties and a novel, attention-based point cloud alignment score. This new method successfully generates linkers that satisfy both relevant 2D and 3D requirements, and achieves state-of-the-art results in producing novel linkers assuming a target linker conformation. This allows for more rational and efficient PROTAC design and optimization. Code and data are available at https://github.com/aivant/ShapeLinker.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.