ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.07974
17
0

Chainlet Orbits: Topological Address Embedding for the Bitcoin Blockchain

18 May 2023
Poupak Azad
Baris Coskunuzer
Murat Kantarcioglu
Cüneyt Gürcan Akçora
ArXivPDFHTML
Abstract

The rise of cryptocurrencies like Bitcoin, which enable transactions with a degree of pseudonymity, has led to a surge in various illicit activities, including ransomware payments and transactions on darknet markets. These illegal activities often utilize Bitcoin as the preferred payment method. However, current tools for detecting illicit behavior either rely on a few heuristics and laborious data collection processes or employ computationally inefficient graph neural network (GNN) models that are challenging to interpret. To overcome the computational and interpretability limitations of existing techniques, we introduce an effective solution called Chainlet Orbits. This approach embeds Bitcoin addresses by leveraging their topological characteristics in transactions. By employing our innovative address embedding, we investigate e-crime in Bitcoin networks by focusing on distinctive substructures that arise from illicit behavior. The results of our node classification experiments demonstrate superior performance compared to state-of-the-art methods, including both topological and GNN-based approaches. Moreover, our approach enables the use of interpretable and explainable machine learning models in as little as 15 minutes for most days on the Bitcoin transaction network.

View on arXiv
Comments on this paper