ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.07560
15
17

Creating Emordle: Animating Word Cloud for Emotion Expression

13 June 2023
Liwenhan Xie
Xinhuan Shu
Jeon Cheol Su
Yun Wang
Siming Chen
Huamin Qu
ArXivPDFHTML
Abstract

We propose emordle, a conceptual design that animates wordles (compact word clouds) to deliver their emotional context to the audiences. To inform the design, we first reviewed online examples of animated texts and animated wordles, and summarized strategies for injecting emotion into the animations. We introduced a composite approach that extends an existing animation scheme for one word to multiple words in a wordle with two global factors: the randomness of text animation (entropy) and the animation speed (speed). To create an emordle, general users can choose one predefined animated scheme that matches the intended emotion class and fine-tune the emotion intensity with the two parameters. We designed proof-of-concept emordle examples for four basic emotion classes, namely happiness, sadness, anger, and fear. We conducted two controlled crowdsourcing studies to evaluate our approach. The first study confirmed that people generally agreed on the conveyed emotions from well-crafted animations, and the second one demonstrated that our identified factors helped fine-tune the delivered emotion extent. We also invited general users to create emordles on their own based on our proposed framework. Through this user study, we confirmed the effectiveness of the approach. We concluded with implications for future research opportunities of supporting emotion expression in visualizations.

View on arXiv
Comments on this paper