A Tansferability Metric Using Scene Similarity and Local Map Observation for DRL Navigation

Autonomous navigation in complex environments without a global map is a long-standing challenge for mobile robots. While deep reinforcement learning (DRL) has attracted a rapidly growing interest in solving such an autonomous navigation problem for its generalization capability, DRL typically leads to a mediocre navigation performance in practice due to the gap between the training scene and the actual test scene. Most existing work focuses on tuning the algorithm to enhance its transferability, whereas few investigates how to quantify or measure the gap therebetween. This paper proposes a new transferability metric -- the scene similarity calculated using an improved image template matching algorithm to quantify the transferability of a DRL agent between the training and test scenes. Specifically, two transferability performance indicators are designed including the global scene similarity that evaluates the overall robustness of a DRL algorithm and the local scene similarity that serves as a safety measure when a DRL agent is deployed without a global map. In addition, this paper proposes the use of a local map that fuses 2D LiDAR data with spatial information of both the agent and the destination as the DRL observation, aiming to improve the transferability of DRL navigation algorithms. With a wheeled robot as the case study platform, both simulation and real-world experiments are conducted in a total of 26 different scenes. The experimental results confirm the robustness of the local map observation design and validate the scene similarity metric in predicting the success rate of DRL navigation algorithms.
View on arXiv