ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.04823
18
0

Data Augmentation for Improving Tail-traffic Robustness in Skill-routing for Dialogue Systems

7 June 2023
Ting-Wei Wu
Fatemeh Sheikholeslami
Mohammad Kachuee
Jaeyoung Do
Sungjin Lee
ArXivPDFHTML
Abstract

Large-scale conversational systems typically rely on a skill-routing component to route a user request to an appropriate skill and interpretation to serve the request. In such system, the agent is responsible for serving thousands of skills and interpretations which create a long-tail distribution due to the natural frequency of requests. For example, the samples related to play music might be a thousand times more frequent than those asking for theatre show times. Moreover, inputs used for ML-based skill routing are often a heterogeneous mix of strings, embedding vectors, categorical and scalar features which makes employing augmentation-based long-tail learning approaches challenging. To improve the skill-routing robustness, we propose an augmentation of heterogeneous skill-routing data and training targeted for robust operation in long-tail data regimes. We explore a variety of conditional encoder-decoder generative frameworks to perturb original data fields and create synthetic training data. To demonstrate the effectiveness of the proposed method, we conduct extensive experiments using real-world data from a commercial conversational system. Based on the experiment results, the proposed approach improves more than 80% (51 out of 63) of intents with less than 10K of traffic instances in the skill-routing replication task.

View on arXiv
Comments on this paper