ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.02671
31
1

Improving Grammar-based Sequence-to-Sequence Modeling with Decomposition and Constraints

5 June 2023
Chao Lou
Kewei Tu
ArXivPDFHTML
Abstract

Neural QCFG is a grammar-based sequence-tosequence (seq2seq) model with strong inductive biases on hierarchical structures. It excels in interpretability and generalization but suffers from expensive inference. In this paper, we study two low-rank variants of Neural QCFG for faster inference with different trade-offs between efficiency and expressiveness. Furthermore, utilizing the symbolic interface provided by the grammar, we introduce two soft constraints over tree hierarchy and source coverage. We experiment with various datasets and find that our models outperform vanilla Neural QCFG in most settings.

View on arXiv
Comments on this paper