ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.02161
22
5

Few-Shot Open-Set Learning for On-Device Customization of KeyWord Spotting Systems

3 June 2023
Manuele Rusci
Tinne Tuytelaars
ArXivPDFHTML
Abstract

A personalized KeyWord Spotting (KWS) pipeline typically requires the training of a Deep Learning model on a large set of user-defined speech utterances, preventing fast customization directly applied on-device. To fill this gap, this paper investigates few-shot learning methods for open-set KWS classification by combining a deep feature encoder with a prototype-based classifier. With user-defined keywords from 10 classes of the Google Speech Command dataset, our study reports an accuracy of up to 76% in a 10-shot scenario while the false acceptance rate of unknown data is kept to 5%. In the analyzed settings, the usage of the triplet loss to train an encoder with normalized output features performs better than the prototypical networks jointly trained with a generator of dummy unknown-class prototypes. This design is also more effective than encoders trained on a classification problem and features fewer parameters than other iso-accuracy approaches.

View on arXiv
Comments on this paper