ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.00824
68
17
v1v2 (latest)

Zero and Few-shot Semantic Parsing with Ambiguous Inputs

1 June 2023
Elias Stengel-Eskin
Kyle Rawlins
Benjamin Van Durme
ArXiv (abs)PDFHTMLGithub (6★)
Abstract

Despite the ubiquity of ambiguity in natural language, it is often ignored or deliberately removed in semantic parsing tasks, which generally assume that a given surface form has only one correct logical form. We attempt to address this shortcoming by introducing AmP, a framework, dataset, and challenge for parsing with linguistic ambiguity. We define templates and generate data for five well-documented linguistic ambiguities. Using AmP, we investigate how several few-shot semantic parsing systems handle ambiguity, introducing three new metrics. We find that large pre-trained models perform poorly at capturing the distribution of possible meanings without deliberate instruction. However, models are able to capture distribution well when ambiguity is attested in their inputs. These results motivate a call for ambiguity to be explicitly included in semantic parsing, and promotes considering the distribution of possible outputs when evaluating semantic parsing systems.

View on arXiv
Comments on this paper