ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.00160
22
9

Audio-Visual Speech Separation in Noisy Environments with a Lightweight Iterative Model

31 May 2023
H. Martel
Julius Richter
Kai Li
Xiaolin Hu
Timo Gerkmann
    VLM
ArXivPDFHTML
Abstract

We propose Audio-Visual Lightweight ITerative model (AVLIT), an effective and lightweight neural network that uses Progressive Learning (PL) to perform audio-visual speech separation in noisy environments. To this end, we adopt the Asynchronous Fully Recurrent Convolutional Neural Network (A-FRCNN), which has shown successful results in audio-only speech separation. Our architecture consists of an audio branch and a video branch, with iterative A-FRCNN blocks sharing weights for each modality. We evaluated our model in a controlled environment using the NTCD-TIMIT dataset and in-the-wild using a synthetic dataset that combines LRS3 and WHAM!. The experiments demonstrate the superiority of our model in both settings with respect to various audio-only and audio-visual baselines. Furthermore, the reduced footprint of our model makes it suitable for low resource applications.

View on arXiv
Comments on this paper