ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.19412
30
13

Are Large Kernels Better Teachers than Transformers for ConvNets?

30 May 2023
Tianjin Huang
Lu Yin
Zhenyu (Allen) Zhang
Lijuan Shen
Meng Fang
Mykola Pechenizkiy
Zhangyang Wang
Shiwei Liu
ArXivPDFHTML
Abstract

This paper reveals a new appeal of the recently emerged large-kernel Convolutional Neural Networks (ConvNets): as the teacher in Knowledge Distillation (KD) for small-kernel ConvNets. While Transformers have led state-of-the-art (SOTA) performance in various fields with ever-larger models and labeled data, small-kernel ConvNets are considered more suitable for resource-limited applications due to the efficient convolution operation and compact weight sharing. KD is widely used to boost the performance of small-kernel ConvNets. However, previous research shows that it is not quite effective to distill knowledge (e.g., global information) from Transformers to small-kernel ConvNets, presumably due to their disparate architectures. We hereby carry out a first-of-its-kind study unveiling that modern large-kernel ConvNets, a compelling competitor to Vision Transformers, are remarkably more effective teachers for small-kernel ConvNets, due to more similar architectures. Our findings are backed up by extensive experiments on both logit-level and feature-level KD ``out of the box", with no dedicated architectural nor training recipe modifications. Notably, we obtain the \textbf{best-ever pure ConvNet} under 30M parameters with \textbf{83.1\%} top-1 accuracy on ImageNet, outperforming current SOTA methods including ConvNeXt V2 and Swin V2. We also find that beneficial characteristics of large-kernel ConvNets, e.g., larger effective receptive fields, can be seamlessly transferred to students through this large-to-small kernel distillation. Code is available at: \url{https://github.com/VITA-Group/SLaK}.

View on arXiv
Comments on this paper