ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.19123
19
8

ELSA: Efficient Label Shift Adaptation through the Lens of Semiparametric Models

30 May 2023
Qinglong Tian
Xin Zhang
Jiwei Zhao
    VLM
ArXivPDFHTML
Abstract

We study the domain adaptation problem with label shift in this work. Under the label shift context, the marginal distribution of the label varies across the training and testing datasets, while the conditional distribution of features given the label is the same. Traditional label shift adaptation methods either suffer from large estimation errors or require cumbersome post-prediction calibrations. To address these issues, we first propose a moment-matching framework for adapting the label shift based on the geometry of the influence function. Under such a framework, we propose a novel method named \underline{E}fficient \underline{L}abel \underline{S}hift \underline{A}daptation (ELSA), in which the adaptation weights can be estimated by solving linear systems. Theoretically, the ELSA estimator is n\sqrt{n}n​-consistent (nnn is the sample size of the source data) and asymptotically normal. Empirically, we show that ELSA can achieve state-of-the-art estimation performances without post-prediction calibrations, thus, gaining computational efficiency.

View on arXiv
Comments on this paper