49
0
v1v2 (latest)

Autoencoding Conditional Neural Processes for Representation Learning

Abstract

Conditional neural processes (CNPs) are a flexible and efficient family of models that learn to learn a stochastic process from data. They have seen particular application in contextual image completion - observing pixel values at some locations to predict a distribution over values at other unobserved locations. However, the choice of pixels in learning CNPs is typically either random or derived from a simple statistical measure (e.g. pixel variance). Here, we turn the problem on its head and ask: which pixels would a CNP like to observe - do they facilitate fitting better CNPs, and do such pixels tell us something meaningful about the underlying image? To this end we develop the Partial Pixel Space Variational Autoencoder (PPS-VAE), an amortised variational framework that casts CNP context as latent variables learnt simultaneously with the CNP. We evaluate PPS-VAE over a number of tasks across different visual data, and find that not only can it facilitate better-fit CNPs, but also that the spatial arrangement and values meaningfully characterise image information - evaluated through the lens of classification on both within and out-of-data distributions. Our model additionally allows for dynamic adaption of context-set size and the ability to scale-up to larger images, providing a promising avenue to explore learning meaningful and effective visual representations.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.