30
4

Online Dynamic Acknowledgement with Learned Predictions

Abstract

We revisit the online dynamic acknowledgment problem. In the problem, a sequence of requests arrive over time to be acknowledged, and all outstanding requests can be satisfied simultaneously by one acknowledgement. The goal of the problem is to minimize the total request delay plus acknowledgement cost. This elegant model studies the trade-off between acknowledgement cost and waiting experienced by requests. The problem has been well studied and the tight competitive ratios have been determined. For this well-studied problem, we focus on how to effectively use machine-learned predictions to have better performance. We develop algorithms that perform arbitrarily close to the optimum with accurate predictions while concurrently having the guarantees arbitrarily close to what the best online algorithms can offer without access to predictions, thereby achieving simultaneous optimum consistency and robustness. This new result is enabled by our novel prediction error measure. No error measure was defined for the problem prior to our work, and natural measures failed due to the challenge that requests with different arrival times have different effects on the objective. We hope our ideas can be used for other online problems with temporal aspects that have been resisting proper error measures.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.