ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.17855
11
2

Vec2Gloss: definition modeling leveraging contextualized vectors with Wordnet gloss

29 May 2023
Yu-Hsiang Tseng
Mao-Chang Ku
Wei-Ling Chen
Yu-Lin Chang
S. Hsieh
ArXivPDFHTML
Abstract

Contextualized embeddings are proven to be powerful tools in multiple NLP tasks. Nonetheless, challenges regarding their interpretability and capability to represent lexical semantics still remain. In this paper, we propose that the task of definition modeling, which aims to generate the human-readable definition of the word, provides a route to evaluate or understand the high dimensional semantic vectors. We propose a `Vec2Gloss' model, which produces the gloss from the target word's contextualized embeddings. The generated glosses of this study are made possible by the systematic gloss patterns provided by Chinese Wordnet. We devise two dependency indices to measure the semantic and contextual dependency, which are used to analyze the generated texts in gloss and token levels. Our results indicate that the proposed `Vec2Gloss' model opens a new perspective to the lexical-semantic applications of contextualized embeddings.

View on arXiv
Comments on this paper