ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.17718
24
27

FuseCap: Leveraging Large Language Models for Enriched Fused Image Captions

28 May 2023
Noam Rotstein
David Bensaid
Shaked Brody
Roy Ganz
Ron Kimmel
    VLM
ArXivPDFHTML
Abstract

The advent of vision-language pre-training techniques enhanced substantial progress in the development of models for image captioning. However, these models frequently produce generic captions and may omit semantically important image details. This limitation can be traced back to the image-text datasets; while their captions typically offer a general description of image content, they frequently omit salient details. Considering the magnitude of these datasets, manual reannotation is impractical, emphasizing the need for an automated approach. To address this challenge, we leverage existing captions and explore augmenting them with visual details using "frozen" vision experts including an object detector, an attribute recognizer, and an Optical Character Recognizer (OCR). Our proposed method, FuseCap, fuses the outputs of such vision experts with the original captions using a large language model (LLM), yielding comprehensive image descriptions. We automatically curate a training set of 12M image-enriched caption pairs. These pairs undergo extensive evaluation through both quantitative and qualitative analyses. Subsequently, this data is utilized to train a captioning generation BLIP-based model. This model outperforms current state-of-the-art approaches, producing more precise and detailed descriptions, demonstrating the effectiveness of the proposed data-centric approach. We release this large-scale dataset of enriched image-caption pairs for the community.

View on arXiv
Comments on this paper