ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.16594
17
16

A Hybrid Neural Coding Approach for Pattern Recognition with Spiking Neural Networks

26 May 2023
Xinyi Chen
Qu Yang
Jibin Wu
Haizhou Li
Kay Chen Tan
ArXivPDFHTML
Abstract

Recently, brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks. However, these SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation. Given that each neural coding scheme possesses its own merits and drawbacks, these SNNs encounter challenges in achieving optimal performance such as accuracy, response time, efficiency, and robustness, all of which are crucial for practical applications. In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes. As an initial exploration in this direction, we propose a hybrid neural coding and learning framework, which encompasses a neural coding zoo with diverse neural coding schemes discovered in neuroscience. Additionally, it incorporates a flexible neural coding assignment strategy to accommodate task-specific requirements, along with novel layer-wise learning methods to effectively implement hybrid coding SNNs. We demonstrate the superiority of the proposed framework on image classification and sound localization tasks. Specifically, the proposed hybrid coding SNNs achieve comparable accuracy to state-of-the-art SNNs, while exhibiting significantly reduced inference latency and energy consumption, as well as high noise robustness. This study yields valuable insights into hybrid neural coding designs, paving the way for developing high-performance neuromorphic systems.

View on arXiv
Comments on this paper