ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.15098
28
3

Referral Augmentation for Zero-Shot Information Retrieval

24 May 2023
Michael Tang
Shunyu Yao
John Yang
Karthik Narasimhan
ArXivPDFHTML
Abstract

We propose Referral-Augmented Retrieval (RAR), a simple technique that concatenates document indices with referrals, i.e. text from other documents that cite or link to the given document, to provide significant performance gains for zero-shot information retrieval. The key insight behind our method is that referrals provide a more complete, multi-view representation of a document, much like incoming page links in algorithms like PageRank provide a comprehensive idea of a webpage's importance. RAR works with both sparse and dense retrievers, and outperforms generative text expansion techniques such as DocT5Query and Query2Doc a 37% and 21% absolute improvement on ACL paper retrieval Recall@10 -- while also eliminating expensive model training and inference. We also analyze different methods for multi-referral aggregation and show that RAR enables up-to-date information retrieval without re-training.

View on arXiv
Comments on this paper