ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.15042
36
3

Test like you Train in Implicit Deep Learning

24 May 2023
Zaccharie Ramzi
Pierre Ablin
Gabriel Peyré
Thomas Moreau
ArXivPDFHTML
Abstract

Implicit deep learning has recently gained popularity with applications ranging from meta-learning to Deep Equilibrium Networks (DEQs). In its general formulation, it relies on expressing some components of deep learning pipelines implicitly, typically via a root equation called the inner problem. In practice, the solution of the inner problem is approximated during training with an iterative procedure, usually with a fixed number of inner iterations. During inference, the inner problem needs to be solved with new data. A popular belief is that increasing the number of inner iterations compared to the one used during training yields better performance. In this paper, we question such an assumption and provide a detailed theoretical analysis in a simple setting. We demonstrate that overparametrization plays a key role: increasing the number of iterations at test time cannot improve performance for overparametrized networks. We validate our theory on an array of implicit deep-learning problems. DEQs, which are typically overparametrized, do not benefit from increasing the number of iterations at inference while meta-learning, which is typically not overparametrized, benefits from it.

View on arXiv
Comments on this paper