ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.14979
16
3

Assessment of the Reliablity of a Model's Decision by Generalizing Attribution to the Wavelet Domain

24 May 2023
Gabriel Kasmi
L. Dubus
Yves-Marie Saint Drenan
Philippe Blanc
    FAtt
ArXivPDFHTML
Abstract

Neural networks have shown remarkable performance in computer vision, but their deployment in numerous scientific and technical fields is challenging due to their black-box nature. Scientists and practitioners need to evaluate the reliability of a decision, i.e., to know simultaneously if a model relies on the relevant features and whether these features are robust to image corruptions. Existing attribution methods aim to provide human-understandable explanations by highlighting important regions in the image domain, but fail to fully characterize a decision process's reliability. To bridge this gap, we introduce the Wavelet sCale Attribution Method (WCAM), a generalization of attribution from the pixel domain to the space-scale domain using wavelet transforms. Attribution in the wavelet domain reveals where and on what scales the model focuses, thus enabling us to assess whether a decision is reliable. Our code is accessible here: \url{https://github.com/gabrielkasmi/spectral-attribution}.

View on arXiv
Comments on this paper