ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.11003
14
91

Weakly-Supervised Concealed Object Segmentation with SAM-based Pseudo Labeling and Multi-scale Feature Grouping

18 May 2023
Chunming He
Kai Li
Yachao Zhang
Guoxia Xu
Longxiang Tang
Yulun Zhang
Z. Guo
Xiu Li
ArXivPDFHTML
Abstract

Weakly-Supervised Concealed Object Segmentation (WSCOS) aims to segment objects well blended with surrounding environments using sparsely-annotated data for model training. It remains a challenging task since (1) it is hard to distinguish concealed objects from the background due to the intrinsic similarity and (2) the sparsely-annotated training data only provide weak supervision for model learning. In this paper, we propose a new WSCOS method to address these two challenges. To tackle the intrinsic similarity challenge, we design a multi-scale feature grouping module that first groups features at different granularities and then aggregates these grouping results. By grouping similar features together, it encourages segmentation coherence, helping obtain complete segmentation results for both single and multiple-object images. For the weak supervision challenge, we utilize the recently-proposed vision foundation model, Segment Anything Model (SAM), and use the provided sparse annotations as prompts to generate segmentation masks, which are used to train the model. To alleviate the impact of low-quality segmentation masks, we further propose a series of strategies, including multi-augmentation result ensemble, entropy-based pixel-level weighting, and entropy-based image-level selection. These strategies help provide more reliable supervision to train the segmentation model. We verify the effectiveness of our method on various WSCOS tasks, and experiments demonstrate that our method achieves state-of-the-art performance on these tasks.

View on arXiv
Comments on this paper