ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.10657
81
110
v1v2v3v4 (latest)

PTQD: Accurate Post-Training Quantization for Diffusion Models

18 May 2023
Yefei He
Luping Liu
Jing Liu
Weijia Wu
Hong Zhou
Bohan Zhuang
    DiffMMQ
ArXiv (abs)PDFHTMLGithub (98★)
Abstract

Diffusion models have recently dominated image synthesis and other related generative tasks. However, the iterative denoising process is expensive in computations at inference time, making diffusion models less practical for low-latency and scalable real-world applications. Post-training quantization of diffusion models can significantly reduce the model size and accelerate the sampling process without requiring any re-training. Nonetheless, applying existing post-training quantization methods directly to low-bit diffusion models can significantly impair the quality of generated samples. Specifically, for each denoising step, quantization noise leads to deviations in the estimated mean and mismatches with the predetermined variance schedule. Moreover, as the sampling process proceeds, the quantization noise may accumulate, resulting in a low signal-to-noise ratio (SNR) in late denoising steps. To address these challenges, we propose a unified formulation for the quantization noise and diffusion perturbed noise in the quantized denoising process. We first disentangle the quantization noise into its correlated and residual uncorrelated parts regarding its full-precision counterpart. The correlated part can be easily corrected by estimating the correlation coefficient. For the uncorrelated part, we calibrate the denoising variance schedule to absorb the excess variance resulting from quantization. Moreover, we propose a mixed-precision scheme to choose the optimal bitwidth for each denoising step, which prefers low bits to accelerate the early denoising steps while high bits maintain the high SNR for the late steps. Extensive experiments demonstrate that our method outperforms previous post-training quantized diffusion models in generating high-quality samples, with only a 0.06 increase in FID score compared to full-precision LDM-4 on ImageNet 256x256, while saving 19.9x bit operations.

View on arXiv
Comments on this paper