ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.06741
24
3

IVP-VAE: Modeling EHR Time Series with Initial Value Problem Solvers

11 May 2023
Jing Xiao
Leonie Basso
Wolfgang Nejdl
Niloy Ganguly
Sandipan Sikdar
    AI4TS
ArXivPDFHTML
Abstract

Continuous-time models such as Neural ODEs and Neural Flows have shown promising results in analyzing irregularly sampled time series frequently encountered in electronic health records. Based on these models, time series are typically processed with a hybrid of an initial value problem (IVP) solver and a recurrent neural network within the variational autoencoder architecture. Sequentially solving IVPs makes such models computationally less efficient. In this paper, we propose to model time series purely with continuous processes whose state evolution can be approximated directly by IVPs. This eliminates the need for recurrent computation and enables multiple states to evolve in parallel. We further fuse the encoder and decoder with one IVP solver utilizing its invertibility, which leads to fewer parameters and faster convergence. Experiments on three real-world datasets show that the proposed method can systematically outperform its predecessors, achieve state-of-the-art results, and have significant advantages in terms of data efficiency.

View on arXiv
Comments on this paper