ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.06638
24
1

An Adaptive Ensemble Framework for Addressing Concept Drift in IoT Data Streams

11 May 2023
Yafeng Wu
Lan Liu
Yongjie Yu
Guiming Chen
Junhan Hu
ArXivPDFHTML
Abstract

In the modern era of digital transformation, the evolution of the fifth-generation (5G) wireless network has played a pivotal role in revolutionizing communication technology and accelerating the growth of smart technology applications. Enabled by the high-speed, low-latency characteristics of 5G, these applications have shown significant potential in various sectors, from healthcare and transportation to energy management and beyond. As a crucial component of smart technology, IoT systems for service delivery often face concept drift issues in network data stream analytics due to dynamic IoT environments, resulting in performance degradation. In this article, we propose a drift-adaptive framework called Adaptive Exponentially Weighted Average Ensemble (AEWAE) consisting of three stages: IoT data preprocessing, base model learning, and online ensembling. It is a data stream analytics framework that integrates dynamic adjustments of ensemble methods to tackle various scenarios. Experimental results on two public IoT datasets demonstrate that our proposed framework outperforms state-of-the-art methods, achieving high accuracy and efficiency in IoT data stream analytics.

View on arXiv
Comments on this paper