72
26

HyperE2VID: Improving Event-Based Video Reconstruction via Hypernetworks

Abstract

Event-based cameras are becoming increasingly popular for their ability to capture high-speed motion with low latency and high dynamic range. However, generating videos from events remains challenging due to the highly sparse and varying nature of event data. To address this, in this study, we propose HyperE2VID, a dynamic neural network architecture for event-based video reconstruction. Our approach uses hypernetworks and dynamic convolutions to generate per-pixel adaptive filters guided by a context fusion module that combines information from event voxel grids and previously reconstructed intensity images. We also employ a curriculum learning strategy to train the network more robustly. Experimental results demonstrate that HyperE2VID achieves better reconstruction quality with fewer parameters and faster inference time than the state-of-the-art methods.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.