ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.06121
30
8

Transformer-Based Model for Monocular Visual Odometry: A Video Understanding Approach

10 May 2023
André O. Françani
Marcos R. O. A. Máximo
ArXivPDFHTML
Abstract

Estimating the camera's pose given images from a single camera is a traditional task in mobile robots and autonomous vehicles. This problem is called monocular visual odometry and often relies on geometric approaches that require considerable engineering effort for a specific scenario. Deep learning methods have been shown to be generalizable after proper training and with a large amount of available data. Transformer-based architectures have dominated the state-of-the-art in natural language processing and computer vision tasks, such as image and video understanding. In this work, we deal with the monocular visual odometry as a video understanding task to estimate the 6 degrees of freedom of a camera's pose. We contribute by presenting the TSformer-VO model based on spatio-temporal self-attention mechanisms to extract features from clips and estimate the motions in an end-to-end manner. Our approach achieved competitive state-of-the-art performance compared with geometry-based and deep learning-based methods on the KITTI visual odometry dataset, outperforming the DeepVO implementation highly accepted in the visual odometry community. The code is publicly available atthis https URL.

View on arXiv
Comments on this paper