ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.06063
19
26

Enhancing Quantum Support Vector Machines through Variational Kernel Training

10 May 2023
Nouhaila Innan
Muhammed Al-Zafar Khan
Biswaranjan Panda
Mohamed Bennai
    VLM
ArXivPDFHTML
Abstract

Quantum machine learning (QML) has witnessed immense progress recently, with quantum support vector machines (QSVMs) emerging as a promising model. This paper focuses on the two existing QSVM methods: quantum kernel SVM (QK-SVM) and quantum variational SVM (QV-SVM). While both have yielded impressive results, we present a novel approach that synergizes the strengths of QK-SVM and QV-SVM to enhance accuracy. Our proposed model, quantum variational kernel SVM (QVK-SVM), leverages the quantum kernel and quantum variational algorithm. We conducted extensive experiments on the Iris dataset and observed that QVK-SVM outperforms both existing models in terms of accuracy, loss, and confusion matrix indicators. Our results demonstrate that QVK-SVM holds tremendous potential as a reliable and transformative tool for QML applications. Hence, we recommend its adoption in future QML research endeavors.

View on arXiv
Comments on this paper