ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.05662
36
79

InternGPT: Solving Vision-Centric Tasks by Interacting with ChatGPT Beyond Language

9 May 2023
Zhaoyang Liu
Yinan He
Wenhai Wang
Weiyun Wang
Yi Wang
Shoufa Chen
Qing-Long Zhang
Zeqiang Lai
Yang Yang
Qingyun Li
Jiashuo Yu
Kunchang Li
Zhe Chen
Xuecheng Yang
Xizhou Zhu
Yali Wang
Limin Wang
Ping Luo
Jifeng Dai
Yu Qiao
    LRM
    MLLM
ArXivPDFHTML
Abstract

We present an interactive visual framework named InternGPT, or iGPT for short. The framework integrates chatbots that have planning and reasoning capabilities, such as ChatGPT, with non-verbal instructions like pointing movements that enable users to directly manipulate images or videos on the screen. Pointing (including gestures, cursors, etc.) movements can provide more flexibility and precision in performing vision-centric tasks that require fine-grained control, editing, and generation of visual content. The name InternGPT stands for \textbf{inter}action, \textbf{n}onverbal, and \textbf{chat}bots. Different from existing interactive systems that rely on pure language, by incorporating pointing instructions, the proposed iGPT significantly improves the efficiency of communication between users and chatbots, as well as the accuracy of chatbots in vision-centric tasks, especially in complicated visual scenarios where the number of objects is greater than 2. Additionally, in iGPT, an auxiliary control mechanism is used to improve the control capability of LLM, and a large vision-language model termed Husky is fine-tuned for high-quality multi-modal dialogue (impressing ChatGPT-3.5-turbo with 93.89\% GPT-4 Quality). We hope this work can spark new ideas and directions for future interactive visual systems. Welcome to watch the code at https://github.com/OpenGVLab/InternGPT.

View on arXiv
Comments on this paper