ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.05601
25
4

Deep Learning and Geometric Deep Learning: an introduction for mathematicians and physicists

9 May 2023
R. Fioresi
F. Zanchetta
    PINN
ArXivPDFHTML
Abstract

In this expository paper we want to give a brief introduction, with few key references for further reading, to the inner functioning of the new and successfull algorithms of Deep Learning and Geometric Deep Learning with a focus on Graph Neural Networks. We go over the key ingredients for these algorithms: the score and loss function and we explain the main steps for the training of a model. We do not aim to give a complete and exhaustive treatment, but we isolate few concepts to give a fast introduction to the subject. We provide some appendices to complement our treatment discussing Kullback-Leibler divergence, regression, Multi-layer Perceptrons and the Universal Approximation Theorem.

View on arXiv
Comments on this paper