ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.05006
16
1

Synthesis of Annotated Colorectal Cancer Tissue Images from Gland Layout

8 May 2023
Srijay Deshpande
F. Minhas
Nasir M. Rajpoot
    MedIm
ArXivPDFHTML
Abstract

Generating realistic tissue images with annotations is a challenging task that is important in many computational histopathology applications. Synthetically generated images and annotations are valuable for training and evaluating algorithms in this domain. To address this, we propose an interactive framework generating pairs of realistic colorectal cancer histology images with corresponding glandular masks from glandular structure layouts. The framework accurately captures vital features like stroma, goblet cells, and glandular lumen. Users can control gland appearance by adjusting parameters such as the number of glands, their locations, and sizes. The generated images exhibit good Frechet Inception Distance (FID) scores compared to the state-of-the-art image-to-image translation model. Additionally, we demonstrate the utility of our synthetic annotations for evaluating gland segmentation algorithms. Furthermore, we present a methodology for constructing glandular masks using advanced deep generative models, such as latent diffusion models. These masks enable tissue image generation through a residual encoder-decoder network.

View on arXiv
Comments on this paper