ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.04099
52
8
v1v2 (latest)

Symbolic Regression on FPGAs for Fast Machine Learning Inference

6 May 2023
Ho Fung Tsoi
Adrian Alan Pol
Vladimir Loncar
E. Govorkova
M. Cranmer
S. Dasu
P. Elmer
Philip C. Harris
I. Ojalvo
M. Pierini
ArXiv (abs)PDFHTML
Abstract

The high-energy physics community is investigating the feasibility of deploying machine-learning-based solutions on Field-Programmable Gate Arrays (FPGAs) to improve physics sensitivity while meeting data processing latency limitations. In this contribution, we introduce a novel end-to-end procedure that utilizes a machine learning technique called symbolic regression (SR). It searches equation space to discover algebraic relations approximating a dataset. We use PySR (software for uncovering these expressions based on evolutionary algorithm) and extend the functionality of hls4ml (a package for machine learning inference in FPGAs) to support PySR-generated expressions for resource-constrained production environments. Deep learning models often optimise the top metric by pinning the network size because vast hyperparameter space prevents extensive neural architecture search. Conversely, SR selects a set of models on the Pareto front, which allows for optimising the performance-resource tradeoff directly. By embedding symbolic forms, our implementation can dramatically reduce the computational resources needed to perform critical tasks. We validate our procedure on a physics benchmark: multiclass classification of jets produced in simulated proton-proton collisions at the CERN Large Hadron Collider, and show that we approximate a 3-layer neural network with an inference model that has as low as 5 ns execution time (a reduction by a factor of 13) and over 90% approximation accuracy.

View on arXiv
Comments on this paper