ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.02803
21
0

Tensor PCA from basis in tensor space

11 April 2023
C. Turchetti
Laura Falaschetti
ArXivPDFHTML
Abstract

The aim of this paper is to present a mathematical framework for tensor PCA. The proposed approach is able to overcome the limitations of previous methods that extract a low dimensional subspace by iteratively solving an optimization problem. The core of the proposed approach is the derivation of a basis in tensor space from a real self-adjoint tensor operator, thus reducing the problem of deriving a basis to an eigenvalue problem. Three different cases have been studied to derive: i) a basis from a self-adjoint tensor operator; ii) a rank-1 basis; iii) a basis in a subspace. In particular, the equivalence between eigenvalue equation for a real self-adjoint tensor operator and standard matrix eigenvalue equation has been proven. For all the three cases considered, a subspace approach has been adopted to derive a tensor PCA. Experiments on image datasets validate the proposed mathematical framework.

View on arXiv
Comments on this paper