ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.02092
21
12

Efficient CNN-based Super Resolution Algorithms for mmWave Mobile Radar Imaging

3 May 2023
Christos Vasileiou
Josiah W. Smith
Shiva Thiagarajan
Matthew Nigh
Yiorgos Makris
Murat Torlak
ArXivPDFHTML
Abstract

In this paper, we introduce an innovative super resolution approach to emerging modes of near-field synthetic aperture radar (SAR) imaging. Recent research extends convolutional neural network (CNN) architectures from the optical to the electromagnetic domain to achieve super resolution on images generated from radar signaling. Specifically, near-field synthetic aperture radar (SAR) imaging, a method for generating high-resolution images by scanning a radar across space to create a synthetic aperture, is of interest due to its high-fidelity spatial sensing capability, low cost devices, and large application space. Since SAR imaging requires large aperture sizes to achieve high resolution, super-resolution algorithms are valuable for many applications. Freehand smartphone SAR, an emerging sensing modality, requires irregular SAR apertures in the near-field and computation on mobile devices. Achieving efficient high-resolution SAR images from irregularly sampled data collected by freehand motion of a smartphone is a challenging task. In this paper, we propose a novel CNN architecture to achieve SAR image super-resolution for mobile applications by employing state-of-the-art SAR processing and deep learning techniques. The proposed algorithm is verified via simulation and an empirical study. Our algorithm demonstrates high-efficiency and high-resolution radar imaging for near-field scenarios with irregular scanning geometries.

View on arXiv
Comments on this paper