84
4

Dynamic Scheduling for Federated Edge Learning with Streaming Data

Abstract

In this work, we consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints. Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration. We formulate a stochastic network optimization problem for designing a dynamic scheduling policy that maximizes the time-average data importance from scheduled user sets subject to energy consumption and latency constraints. Our proposed algorithm based on the Lyapunov optimization framework outperforms alternative methods without considering time-varying data importance, especially when the generation of training data shows strong temporal correlation.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.